
www.manaraa.com

Communications of the Association for Information Systems

Volume 9 Article 12

October 2002

Component-Based Development Using UML
Luyin Zhao
Philips Research USA, luyin.zhao@philips.com

Keng Siau
University of Nebraska-Lincoln, siauk@mst.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Zhao, Luyin and Siau, Keng (2002) "Component-Based Development Using UML," Communications of the Association for Information
Systems: Vol. 9 , Article 12.
DOI: 10.17705/1CAIS.00912
Available at: https://aisel.aisnet.org/cais/vol9/iss1/12

https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol9%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol9?utm_source=aisel.aisnet.org%2Fcais%2Fvol9%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol9/iss1/12?utm_source=aisel.aisnet.org%2Fcais%2Fvol9%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol9%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol9/iss1/12?utm_source=aisel.aisnet.org%2Fcais%2Fvol9%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

www.manaraa.com

Communications of the Association for Information Systems (Volume 9, 2002) 207-222 207

Component-Based Development Using UML by L. Zhao and K. Siau

COMPONENT-BASED DEVELOPMENT USING UML

Luyin Zhao
Healthcare Systems & IT
Philips Research USA

Keng Siau
Department of Management
University of Nebraska-Lincoln
ksiau@unl.edu

ABSTRACT

Component-based software development (CBD) is a potential breakthrough for software
engineering. Unified Modeling Language (UML) can potentially facilitate CBD design and
modeling. Although many research projects concentrate on the conceptual interrelation of UML
and CBD, few incorporate actual component frameworks into the discussion, which is critical for
real-world software system design and modeling. This paper reviews component-based
development, including the use of UML for modeling CBD. The paper then discusses the means
by which UML extension mechanisms can be used to better support the popular component
framework -- CORBA. Two other important component frameworks, DCOM and Web Services,
are also discussed.

KEYWORDS: Component-based development, UML, CORBA, DCOM, Web services

I. COMPONENT-BASED DEVELOPMENT

Software engineering faces new challenges with the increasing complexity and length of the
software development cycle. In the search for alternative methods to develop software more
efficiently and with higher quality, component and component-based development (CBD) for
software reuse is a key approach [Ben-Shaul et al., 1999; Brown and Wallnau, 1998; Norris et al.,
2000].

Component-based development is a software development approach in which all aspects and
phases of the development lifecycle, including requirements analysis, design, construction,
testing, deployment, and project management, are based on components [Herzum and Sims,
1999].

CBD evolved from the object-oriented methodology that encapsulates internal details of objects,
and allows external applications to know and use the objects’ interfaces. Over time, it proved
difficult for objects developed with different languages, platforms, and running environments to
work together (interoperability), and it was found that this difficulty impedes software reuse.

www.manaraa.com

208 Communications of the Association for Information Systems (Volume 9, 2002) 207-222

Component-Based Development Using UML by L. Zhao and K. Siau

Therefore, distributed-object computing (DOC) was introduced, with CORBA, COM/DCOM, and
JavaBeans as prominent examples [Hopkins, 2000]. Even though there are heated debates
regarding whether CORBA or COM/DCOM are truly component-enabling frameworks, they are
among the most popular component-enabling frameworks [Kozaczynski and Booch, 1998]. With
the improvement of existing frameworks (e.g., the release of CORBA 3.0) and the emergence of
Web Services and .NET architecture, we expect better component support in the near future.

WHY CBD?
Similar to plug-and-play computer hardware components that allow assembling a new computer
in 10 minutes with little knowledge of the components, we would like to see such ease in the
software industry even though software characteristics differ from hardware.

Component-based software development changes the way applications are developed. With
components as building blocks, applications could be “assembled” with reusable pieces of
software, thus reducing a large amount of work required for software design and implementation.
The reuse of proven components also helps to achieve higher reliability and maintainability for the
system.

For example, suppose your organization is using a large-scale business application that contains
an accounting module. This application is likely to be expensive to replace. Further complicating
matters, suppose that the software vendor informed your organization that the currently
expensive accounting module will soon become outdated because of a new accounting standard
proposed by Congress. CBD is a solution to this dilemma. If this application was developed using
the CBD approach, the IT professionals in your organization would simply “remove” the current
component, purchase anew accounting component module from an accounting software vendor,
and “plug” the new component into the existing system. It could be as easy as replacing a
computer monitor. Ideally, the organization could even buy the usage for this accounting
component rather than purchasing the software component. The latter approach requires that
organizations request the new accounting component through a network-based vendor, and
receive only the desired functionality (Figure 1).

Component-based
Business
Application

Network

Accounting

component

Service Result

Service Request
Interface

Other

components

Component

Provider

Figure 1. Component-Based Application

Although an appropriate business model for CBD is still under debate, and opinions about CBD
differ, CBD does propose a facilitated approach to replacing old software components whenever
new modules from the same vendor are released. This approach eliminates the need to reinstall
the entire software system. CBD also renders legacy and other useful software components
reusable in new systems.

Traditional software engineering methodologies execute analysis, design, implementation, and
testing without capitalizing much on reusable components. CBD, with its focus on reuse, can
have major impacts on software engineering. For example,

• CBD can reduce quality assurance work and lead to higher reliability and lower cost.
• CBD can reduce design work and allow developers to focus more on business problems.
• CBD can simplify implementation by using components with easy-to-use interfaces.

www.manaraa.com

Communications of the Association for Information Systems (Volume 9, 2002) 207-222 209

Component-Based Development Using UML by L. Zhao and K. Siau

The design phase can benefit much from CBD. Design is the conceptual design of a system’s
behavior in terms of services, interfaces, and interactions. It is normally considered a critical
phase in software engineering. Traditional design methodologies may not support CBD well.
UML, on the other hand, with its comprehensive set of diagramming techniques and extension
mechanisms, is helpful for CBD. Nevertheless, component-based systems depend heavily on the
specific framework on which they are built. Therefore, in extending UML to support CBD, the
developer needs to take into account the unique features of the component framework. This
consideration also helps to simplify the transition from design to implementation (for example,
source code generation).

II. COMMON COMPONENT FRAMEWORKS AND UML

The discussion of CBD modeling using UML in books and articles is usually high-level and
generic [Kobryn, 2000; Barn, 1998]. Typically, no specific component framework is involved.
Users who use components in their specific environment may encounter trouble implementing
those ideas. In this paper, we discuss UML extensions that will support CBD design for three of
the most popular frameworks: CORBA, DCOM, and Web services. Before discussing the means
by which UML can be used to support CBD design under these frameworks, we first provide a
brief review of CORBA and DCOM.

At first glance, CORBA and DCOM appear to be quite similar: both are component-based
frameworks although developed by different organizations. CORBA is the standard proposed by
the Object Management Group (OMG) whereas DCOM is the standard offered by Microsoft.

OMG COMMON OBJECT REQUEST BROKER ARCHITECTURE (CORBA)
OMG Common Object Request Broker Architecture (CORBA) is an open standard solution for
distributed object computing. Basically, CORBA provides a platform for reusable components on
heterogeneous environments to communicate and interoperate. An organization can use this
middleware to build distributed component-based applications whose composite parts run on
different machines [Mowbray and Ruh, 1997; OMG, 2000; Pope, 1997]. As shown in Figure 2,
ORB (Object Request Broker) is a software bus connecting the client and the server. The
Interface Repository stores all IDL (Interface Definition Language) interfaces provided by server
objects. The Implementation Repository contains mapping information of server objects and
executable files. The client makes service invocations to the server using either static Stub or
Dynamic Invocation Interface (DII). Correspondingly, the server uses static Skeleton or Dynamic
Skeleton Interface (DSI) to deliver invocations to object implementations. All invocations
transmitted through ORB are in implementation-independent formats.

O R B

Client Server

Stub DII Skeleton DSI

invocation

idl reference

Interface Repository Implementation Repository

Interfaces Components

Object Adapter

Figure 2. Common Object Request Broker Architecture

www.manaraa.com

210 Communications of the Association for Information Systems (Volume 9, 2002) 207-222

Component-Based Development Using UML by L. Zhao and K. Siau

MICROSOFT DISTRIBUTED COM (DCOM)
 Microsoft Distributed COM (DCOM), like CORBA, is a binary and network standard that
allows any two components to communicate regardless of the machines they are running on (as
long as the machines are connected), the operating systems (OS) the machines are running (as
long as the OS supports COM), and the languages the components are written in. Figure 3 shows
the architecture of DCOM. Similar to CORBA, DCOM uses a proxy object and stub that are
counterparts of the CORBA stub and skeleton. MIDL (Microsoft IDL) is used to describe
interfaces provided by the server. DCOM also uses a dynamic invocation method called COM
Automation (not shown on the diagram).

D C O M

Client Server

Proxy Object Stub

invocation

midl reference

Interfaces Components

Figure 3. Distributed COM

The reason we discuss CORBA and DCOM here is that they are the two most popular
component frameworks. Comparing these two frameworks is not the purpose of this paper. They
both provide frameworks for components to “live” on. In the following sections, we use CORBA
and DCOM to illustrate how UML can be extended to support component-based modeling.

III. CBD DESIGN USING UML

Unified Modeling Language (UML) is a visual language for visualizing, specifying, constructing,
and documenting the artifacts of a system-intensive system [Booch et al., 1999, p. xv]. UML
provides a number of diagrams for modeling a system from different points of view. UML is now
the de facto standard for object-oriented software system design.

Unlike regular software development, CBD depends largely on the underlying supporting
framework. Therefore CBD brings new issues to modeling. UML is suitable for CBD modeling
because of its existing support for component and its extension mechanisms that provide the
much-needed flexibility. In the following sections, we discuss the current UML support for CBD
modeling, and the limitations of UML and possible extensions.

CBD DESIGN
Although CBD design contains many similarities to normal software design, its unique
characteristics should be considered. That is, the general software design methodologies must be
tailored to meet the special needs of CBD.

Interface
The Interface is one of the most critical concepts in CBD since it represents behaviors presented
to the outside world by a component. Components are different from classes for two reasons.
First, with interfaces, components represent the physical packaging of otherwise logical
components. Second, components and classes are at different levels of abstraction [Booch et al.,
1999]. Therefore, interfaces constitute the boundary between the component framework and
application layer.

www.manaraa.com

Communications of the Association for Information Systems (Volume 9, 2002) 207-222 211

Component-Based Development Using UML by L. Zhao and K. Siau

For example, once a CORBA component is encapsulated and described by IDL, external
applications that use CORBA components can only see the interfaces provided by them. For this
reason, component-based systems design requires good support for interface modeling. In CBD
modeling, the “bridges” that connect components are interfaces.

Component Framework
Component Framework is another important aspect of CBD. Components lose their “bed” without
it. Currently CORBA and DCOM are among the most popular frameworks. Traditional design
techniques are poorly suited to the requirements of component-based systems. They offer little in
terms of techniques and guidance for defining and using interfaces as key design abstractions.
Even though IDL provides a good way to describe component interfaces, it is basically intended
for independent component description and is far from sufficient in a full-fledged component-
based design process.

UML
Unified Modeling Language (UML), the standard language for modeling object-oriented systems,
with its easy-to-understand graphic representations, is a good tool to model and build component-
based systems. First, UML provides a component diagram and interface modeling mechanism
that meet the most fundamental requirements of “interface-focused design.” Second, UML
extension mechanisms (stereotypes, tagged values, and constraints) provide the flexibility in
extending UML semantics and tailoring UML for use in framework-specific component-based
systems. More specifically,

• Stereotype allows creating new modeling elements (meta classes) for the modeling.
• Tagged values are key-value pairs associated with modeling elements. The main reason

to “tag values” is that these values need to be recognized at the modeling stage.
• Constraints are rules that define the conditions that must be specified in the model.

In the following subsections, we address the following two questions:

• Which UML diagrams are related to CBD?
• How can we use UML extension mechanisms for CBD under CORBA and DCOM

frameworks?

CBD RELATED UML DIAGRAMS
UML provides a single, broad view of a component as a physical and material element of a
system that can reside on a node. A component is defined as a physical and replaceable part of a
system that conforms to and provides the realization of a set of interfaces. Furthermore, with the
help of the UML stereotyping mechanism, the logical description of the interface can be modeled
as a special kind of a class [Booch et al., 1999].

First, we examine the means by which some UML diagrams and their possible variants are
related to CBD modeling:

UML Package
There are similarities between the component concept and the UML package concept. A package
is a more generic and loosely coupled component. A natural extension of a package is to model
the integration or composition among several components, which is derived from basic package
semantics.

Class Diagram
After defining use case diagrams, a set of interfaces and interactions among components based
on the framework they rely on should be defined to support the required behavior. This stage
characterizes a component modeling approach.

www.manaraa.com

212 Communications of the Association for Information Systems (Volume 9, 2002) 207-222

Component-Based Development Using UML by L. Zhao and K. Siau

Interfaces provided by components are widely defined by IDL. UML class diagrams, distinct from
IDL, describe interfaces, classes, collaborations, and relationships in a more architectural,
systematic, and easy-to-understand manner than text-based IDL. Moreover, using UML
stereotypes, different component interfaces can be modeled as interface classes.

Component Diagram
UML component diagrams are used to highlight the organization and dependencies among a set
of components. The most representative components are Microsoft DLL files or CORBA
components.

Component diagrams are closely related to CBD modeling. However, current UML component
diagrams are too simple to model complex component-based systems since only three generic
modeling elements are defined: component, interface, and dependencies. UML component
diagrams do not capture information related to component frameworks, which could be important
for CBD modeling because design models that are too generic provide little help to CBD
implementations that rely heavily on component frameworks. Another drawback is that the
relationship between a component and the interfaces it provides are loosely coupled in
component diagrams.

Deployment Diagram
UML deployment diagrams define the physical architecture of the system, that is, how physical
components are deployed to execute on particulate nodes in the system.

UML diagrams presented in this section can play important roles in CBD modeling. Deviations
and extensions are needed for modeling CBD more adequately, particularly if there is certainty
regarding which component framework a specific system is going to use. Creating new elements
and performing framework-specific extensions can greatly facilitate CBD modeling.

IV. UML EXTENSION FOR CBD MODELING

UML extensions can be used for customizing and extending UML [Alhir, 1999; Baumeister et al.,
1999; Siau and Cao, 2001; Siau and Halpin, 2001]. UML defines properties for each modeling
element and a means for adding new types of model elements and for modifying the properties of
existing model elements. Since each system has different properties that differentiate it, (i.e.,
whether it is a distributed application, a real-time application, or a business-oriented application)
extensions can be tailored for each case. In other words, systems with different types/properties
can use new domain-specific modeling elements created by extending UML. Extension is critical
because the modeling tool must be flexible enough to capture sometimes subtle differences in
systems; one size really does not fit all when it comes to design tools.

The UML concepts can be used for CORBA modeling. However, providing framework-specific
stereotypes for some common situations provides a common terminology for this domain. More
importantly, new modeling elements created by stereotypes are more definitive and reusable in
the system domain than other temporary notations. OMG created a CORBA Profile of UML
[OMG, 2001]. CORBA Profile mainly focuses on CORBA type definition and modeling using the
UML extension mechanisms. Since CORBA is a text-based standard, architectural or distributed-
related characteristics are not represented by graphs. Simply extending UML for modeling
CORBA types cannot make full use of the powerful graphical features of UML to model some
architectural aspects. Therefore we try to take a tentative step to come up with some more
intuitive architectural modeling extensions to create a more readable UML representation and
enable easier system design transition to the implementation phase. For example, one-way
invocation is represented by a class-based stereotype in the CORBA profile. But we represent it
using a UML dependency; by putting the method name on the relation we can show the one-way
invocation relationship more clearly.

This section describes UML extension mechanisms that can be used to tailor the use of UML for
framework-specific CBD modeling. We select CORBA as our main example because CORBA is

www.manaraa.com

Communications of the Association for Information Systems (Volume 9, 2002) 207-222 213

Component-Based Development Using UML by L. Zhao and K. Siau

quite mature and it represents the component standards that are implemented by a large number
of ORB (Object Request Broker) products. Different ORBs may use different implementation
approaches and even additional APIs, but they must conform to the same specification. This
restriction is much like “software design”, and thus, CBD modeling based on CORBA largely
depends on the standard. In addition, we try to incorporate both “objects” and “components” in
the same diagram because of the unique characteristics of CBD that are different from traditional
object-oriented modeling.

This paper is not meant to be a complete definition of CORBA modeling concepts. We selected a
list of commonly used CORBA concepts as new building elements. When more CORBA elements
are needed, users can create their own extensions through the methodology introduced here.

A UML EXTENSION FOR CORBA
CORBA is basically a standard and specification for component-based application domains.
CORBA can be viewed as a software middleware. Components (including IDL objects, high-level
services, and facilities) distributed in networks are able to interoperate with one another. Again,
the UML extension mechanisms enable us to create new modeling elements for domain-specific
systems. Client-side modeling requires much more design and modeling than the server (or
component provider) side. The main reason for this asymmetry is that client side application
building needs more complex business logic and object interactions than the server side, which is
basically a repository storing sets of consistently encapsulated components. Therefore, we
selected the following CORBA concepts that are closely related to client-side design as our new
modeling elements because they represent commonly used elements in most CORBA-based
systems. They are also listed as highly important concepts in OMG’s CORBA specification –
under the section “CORBA Overview” [OMG, 2000]. In addition, in choosing specific extension
elements, we follow the definition of extension mechanisms as described in the previous section.
For example, the reason to define {host, port} as a tagged value is because we believe the
locations of different components need to be realized during the design phase of a distributed
CBD application to oversee the system architecture and to choose appropriate dynamic/static
invocation approaches.

Local and Remote Objects
Extension used: Stereotype, TaggedValue
Metamodel class: Class
Notation: <<remote>>, {host, port}
Description: Local objects are regular objects that are located in the user (client) application
domain. In contrast, remote objects have an IDL description and are reusable. They can be
located on any machine inside the network. Those on the client-side can find them through object
references. That is, the client side must always keep track of the object by a reference containing
host and port. The reason for using a tagged value is to keep track of where the remote object is
at any time in order for the distributed application to work correctly. Although more or less related
with implementation, we prefer to place this information at the design phase because it reflects
the deployment of a distributed system and will possibly affect implementation activities.

ObjectName
<<remote>>

{host, port}

One-Way Invocation
Extension used: Stereotype, TaggedValue
Metamodel class: Dependency
Notation: <<oneway>>, {host, port}

www.manaraa.com

214 Communications of the Association for Information Systems (Volume 9, 2002) 207-222

Component-Based Development Using UML by L. Zhao and K. Siau

Description: When the one-way invocation is used, the operation gives the client an immediate
return to the thread of control. Otherwise, the client thread will be blocked until the request is
processed and the result is returned.

Client ObjectName
<<remote>><<oneway>>

{host, port}

Static and Dynamic Invocation
Extension used: Stereotype, Constraints
Metamodel class: Class
Notation: <<stub>>, <<dii>>, {idlname.idl}
Description: Static invocation means that the IDL description is available at compile time.
Therefore, the client-side has a static stub for calling a server-side component. Dynamic
invocation allows dynamic construction of an object invocation; that is, rather than calling a stub
routine that is specific to a particular operation on a particular object, a client may specify the
object to be invoked, the operation to be performed, and the set of parameters for the operation
through a sequence of calls. The reason for using a constraint is that each stub must be compiled
from an IDL file containing component interfaces.

StubName
<<stub>>

{idlname.IDL}

DIIName
<<dii>>

Callback Invocation
Extension used: Stereotype, TaggedValue
Metamodel class: Dependency
Notation: <<callback>>, {host, port}
Description: Callback discards a pure “client/server” pattern. After the client sends a request to
the server, it is possible that the server needs to “callback” the client to obtain service from client
objects. This process requires the client-side, in a similar fashion to the server-side, to provide the
IDL component with references. Thus, the client component must also have a TaggedValue
recording the object reference.

ObjectName
<<remote>>

Client
<<callback>>

{host, port}
{host, port}

Service Components
Extension used: Stereotype, TaggedValue
Metamodel class: Component
Notation: <<service>>, {host, port}
Description: CORBA services are extensions of the CORBA core. They are called Object
Services officially. They are a set of IDL components that can be used in any application.
Common service components include: naming services, trading services, transactions, event
services, and security services. Compared to normal components, service components are more
independent and encapsulated. Therefore we use the component as a metamodel for this type of
object. Service objects are also remote objects, and their references therefore need to be traced
by a TaggedValue.

www.manaraa.com

Communications of the Association for Information Systems (Volume 9, 2002) 207-222 215

Component-Based Development Using UML by L. Zhao and K. Siau

Service
Name

<<service>>

{host, port}

Event Service
Extension used: Stereotype
Metamodel class: Component, Class
Notation: <<service>>, <<push>>, <<pull>>
Description: A CORBA event is a communication between two or more entities regarding the
occurrence of a state transition. Although it belongs to the CORBA service category, a CORBA
event should be modeled separately because the components that use it behave differently than
those components that use other CORBA services. In the push mode, the supplier pushes the
message into the event channel with which consumers are already subscribed for messages,
regardless of the consumers’ status. In the pull model, a consumer pulls the event message from
the event channel, thus pulling from the supplier.

EventChannel
<<service>>

Supplier
<<push>> Consumer<<pull>>

Composition
Extension used: Stereotype
Metamodel class: Package
Notation: <<Composition>>
Description: Component composition means using reusable components that are distributed on
the network together with local objects to build a complete application. To represent this concept,
we use a package as a metamodel.

<<Composition>>

Example
To illustrate our extension mechanisms, the following example (illustrated in Figure 4) shows the
design of a simple word processor created with several components, either local or remote.
Though simplified, it provides a general idea of how to model a component-based CORBA
application using UML and the suggested extension mechanisms.

• The word processor is composed of both local components (such as a WordCounter,
an Editor, and an Email function) and remote components (such as a SpellChecker, a
Printer, and a WebConnector). The latter could reside on remote network hosts.

• The <<composition>> stereotype encloses what are needed to form a system from
the point of view of a “client”.

www.manaraa.com

216 Communications of the Association for Information Systems (Volume 9, 2002) 207-222

Component-Based Development Using UML by L. Zhao and K. Siau

Naming
<<Service>>

Word Processor
<<Composition>>

AutoCorrection
<<stub>>

FileInsertion

Editor

Print
<<Stub>>

WordCounter

FullTextProcessor

SpellChecker
<<Remote>>

SCInterface

AutocCorr
<<Remote>>

ACInterface

Printer
<<Remote>>

PrintInterface

WebConnector
<<Remote>>

ConnInterface

WebDII
<<DII>>

Email

InterfaceRepository
<<Service>>

query

SpellChecker
<<Remote>>

query

send()

<<Callback>>

print()

cse.unl.edu:1234

matrix.unl.edu:50

cba.unl.edu:3131

cse.unl.edu:11

cse.unl.edu:9999

cse.unl.edu:23

cse.unl.edu:36

{print.idl}

{AutoCorr.idl}

{SpellCheck.idl}

Figure 4. Simple Word Processor Modeling Using UML Extensions

• For a remote component, a <<stub>> is generated by a corresponding IDL file on the
client side, which interacts with the <<interface>> provided by the remote component
with a reference (such as {cse.unl.edu:4651}).

• For instance, when the word processor needs to do automatic correction, it invokes a
remote component “AutoCorrector” by means of the “AutomaticCorrection” stub.

• <<Service>> components need to indicate a reference too, even though they do not
have an interface object indicated because that does not change.

• For instance, when we are unsure where the component “SpellChecker” is, we can
simply call the service component Naming and retrieve the object reference.

• If the text being edited is to be sent by email, the “Email” component may compose a
dynamic call to invoke the “WebConnector” component by means of a DII (Dynamic
Invocation Interface), because we may not know the specific interface for a specific
internet connection component at compile time. Since the connection establishment
may take a long time, an asynchronous mode allows the “WebConnector” to call back
when the connection is no longer needed. Then, the Email object can do whatever it
needs to do.

www.manaraa.com

Communications of the Association for Information Systems (Volume 9, 2002) 207-222 217

Component-Based Development Using UML by L. Zhao and K. Siau

V. DISCUSSION

We used CORBA as an example to illustrate the UML modeling extension mechanisms. CORBA
represents a common specification for all implementations (Object Request Broker) that conform
to it. Apparently that is not enough for real-world component-based systems, especially for
modeling a large-scale system. Even though we described some diagrams that are useful for
modeling component-based systems, other UML diagrams (such as collaboration diagrams,
deployment diagrams) can also be customized to improve CBD modeling. Those who use
CORBA or other popular component frameworks may adapt the extension methodology to create
more modeling elements for their specific use.

Microsoft DCOM is a major component framework other than CORBA. DCOM is both a
specification and an implementation. Although this model differs from CORBA, especially in
implementation, the design method used for CBD in DCOM can largely be the same as that used
in CORBA.

We show an example to provide a simple comparison: Suppose our client likes to use the
interface GetTimeElaps(integer t2, integer t1) exposed by another timing component named
Timer without knowing the parameter values at compile time. In CORBA, using the Dynamic
Interface Invocation (DII) could solve this problem, but in DCOM, it is a typical Automation
solution. Using UML, we have similar class diagrams (Figures 5 and 6).

Figures 5 and 6 show the same design ideas despite the architectural differences. The
component Timer uses an interface named TimerInterface with a GetTimeElaps() operation. The
ClientObject needs the Dynamic Invocation Interface to compose the invocation dynamically.
Therefore, it is quite straightforward to apply our extension approach to the DCOM environment.

ClientObject

Timer
<<remote>>

TimerDII
<<DII>>

<<Dynamic Invocation>>

TimerInterface

GetTimeElaps()

<<interface>>

Figure 5. CORBA Version of Example

ClientObject Timer
<<remote>>

TimerDispatch
<<iDispatch>>

<<Automation>>

TimerInterface

GetTimeElaps()

<<interface>>

Figure 6. DCOM Version of Example1:

1 Extension Used: Stereotype; Metamodel class: Class; Notation: <<remote>>, <<interface>>,
<<iDispatch>>, <<Automation>>

www.manaraa.com

218 Communications of the Association for Information Systems (Volume 9, 2002) 207-222

Component-Based Development Using UML by L. Zhao and K. Siau

Of course, DCOM is not the same in every aspect as CORBA. Figure 7 is another example of
how to model DCOM Containment using UML2.

Figure 7. Modeling Containment in DCOM

Figure 7 shows that the container has two interfaces: IMultiply and Isum [Eddon and Eddon,
1998]. Instead of providing implementation for the ISum interface itself, the container delegates
the invocation of ISum to the ISum interface of another component, named InsideDCOM.

Web Services
Before closing our discussion, we would like to mention the newly emerged technology called
Web services. Web services embody a new distributed computing model enabled by UDDI [UDDI
Community 2001], SOAP (Simple Object Access Protocol), and WSDL (Web Services Definition
Language). Although similar to other existing distributed computing models such as CORBA
[Vinoski, 2002] and DCOM, Web services model incorporates state-of-the-art XML technology,
and is light-weight and more powerful because of its interoperability and firewall-friendliness.

Moreover, the Web services model brings the simplicity of modeling because of its simple
architecture. The UML class diagram shown in Figure 8 could become the template for most of
the Web-services based applications.

Many tools, such as Rational Rose, Visio, and Visual UML, support UML. But few of them provide
adequate support for UML extensions ranging from element icon generation, diagram
customization to diagram validation. Simply supplying modeling elements for users to choose
among cannot meet the requirements of different users. This diversity is likely an opportunity for
UML tool producers.

VI. CONCLUSIONS

This paper discusses the relationship between UML and component-based design from the
following perspectives:

• Component-based development with its supporting framework offers great potential
to begin a revolution in software engineering.

• Though similar to traditional design, CBD design needs some changes and flexibility
because of the interface-centric and framework-based characteristics.

2 Extension Used: Stereotype; Metamodel class: Class; Notation: <<Container>>, <<interface>>,
<<Reuse>>,

www.manaraa.com

Communications of the Association for Information Systems (Volume 9, 2002) 207-222 219

Component-Based Development Using UML by L. Zhao and K. Siau

Contact Info.
Business Description
Business Category

<<businessEntity>>

Service Type
Service Description

<<businessService>>

UDDI

DiscoveryRegistration
ServiceProvider
<<provider>>

Customer
<<user>>

WSDL Location
Access Point

<<bindingTemplate>>

Delivery

Figure 8. UML Template for Web-Services Based Applications

• For component-based systems design and modeling, diagrams and extension
mechanisms provided by UML are among the best choices because UML enables
better interfaces modeling and can be enhanced by means of extensions.

• For better modeling on the framework side of CBD, UML extension mechanisms
should be adopted to include framework-specific new elements. The reason for using
extension mechanisms is not to increase complexity, but to model the system more
precisely.

• For a specific framework, what should be introduced into extension are those
common elements that might be used in all implementations.

This paper discusses an approach that will enable CBD designers to find new solutions when
they are faced with certain component frameworks and are unsure about how aspects related to it
should be modeled, and how to build models that are closer to implementation. Although CORBA
and DCOM are used as examples for illustrating the UML extension mechanisms, other
component-based development approaches and elements can be modeled via this mechanism.

Editor’s Note: This article was received on January 2, 2002. It was with the authors for
approximately two and a half months for two revisions. It was published on October 11, 2002.

REFERENCES

EDITOR’S NOTE: The following reference list contains the address of World Wide Web pages.
Readers who have the ability to access the Web directly from their computer or are reading the
paper on the Web, can gain direct access to these references. Readers are warned, however,
that

www.manaraa.com

220 Communications of the Association for Information Systems (Volume 9, 2002) 207-222

Component-Based Development Using UML by L. Zhao and K. Siau

1. these links existed as of the date of publication but are not guaranteed to be working
thereafter.
2. the contents of Web pages may change over time. Where version information is
provided in the References, different versions may not contain the information or the
conclusions referenced.
3. the authors of the Web pages, not CAIS, are responsible for the accuracy of their
content.
4. the authors of this article, not CAIS, is responsible for the accuracy of the URL and
version information.

Alhir, S.S. (1999) “Extending the Unified Modeling Language (UML)”,
http://home.earthlink.net/~salhir/extendingtheuml.html (current Sep. 25, 2002).

Barn, B. and A.W. Brown (1998). “Technology of Object-Oriented Languages”, Proceedings of
26th Technology of Object-Oriented Languages and Systems , pp. 385-395

Baumeister, H., N. Koch, and L. Mandel (1999). “Towards a UML Extension for Hypermedia
Design”, http://www.fast.de/Projekte/forsoft/uml99/ (current Sep. 25, 2002).

Ben-Shaul, I., J.W. Gish, and M. Robinson (1999). “An Integrated Network Component
Architecture”, IEEE Software, (15)5, pp. 79-87.

Booch, G., J. Rumbaugh, and I. Jacobson (1999). The Unified Modeling Language User Guide,
Upper Saddle River, NJ: Addison-Wesley

Brown, A.W. (2000) Large-Scale Component-Based Development, Upper Saddle River, NJ:
Prentice Hall

Brown, A.W. and K.C. Wallnau (1998) “The Current State Of CBASE”, IEEE Software, 15(5), pp.
37-46

Eddon, G. and H. Eddon (1998) Inside Distributed COM, Washington, Microsoft Press
Herzum, P. and O. Sims (1999) Business Component Factory, New York, John Wiley & Sons,
Inc.

Hopkins, J. (2000) “Component Primer”, Communications Of The ACM, (43)10, pp.27-30
Kobryn, C. (2000) “Modeling Components And Frameworks With UML”, Communications Of The
ACM, 43(10), pp. 31-38

Kozaczynski, W. and G. Booch (1998) “Component-Based Software Engineering”, IEEE
Software, 15(5), pp. 34-36

Mowbray, T.J. and W.A. Ruh (1997) Inside CORBA, Upper Saddle River, NJ: Addison-Wesley

Norris, M., R. Davis, and A. Pengelly, (2000) Component-Based Network System Engineering,
Norwood, MA: Artech House Publishers

OMG (2000) “Common Object Request Broker Architecture (CORBA) v3.0”,
http://www.omg.org/technology/documents/formal/corba_iiop.htm, (current Sep. 25, 2002).

OMG (2001) “UML Profile for CORBA Specification”,
http://www.omg.org/technology/documents/formal/profile_corba.htm, (current Sep. 25, 2002).

Pope, A. (1997) The CORBA Reference Guide, Upper Saddle River, NJ: Addison-Wesley

www.manaraa.com

Communications of the Association for Information Systems (Volume 9, 2002) 207-222 221

Component-Based Development Using UML by L. Zhao and K. Siau

Siau, K., and Q. Cao (2001) “Unified Modeling Language – A Complexity Analysis,” Journal of
Database Management, 12(1), pp. 26-34

Siau, K., and T. Halpin (2001) Unified Modeling Language: Systems Analysis, Design, and
Development Issues, Hershey, PA, Idea Group Publishing

UDDI Community (2001), http://www.uddi.org (current Sep. 25, 2002).

Vinoski, S. (2002) “Where is middleware”, IEEE Internet Computing, 6(2), pp. 83-85

LIST OF ABBREVIATIONS

CBD – Component Based Development
CBD is a software development approach in which software are developed by reusing
interoperable software components. CBD enables the development of software systems with
higher efficiency, higher quality, lower cost, and shorter development time. Usually CBD is
supported by component-enabling frameworks such as CORBA and DCOM.

CORBA – Common Object Request Broker Architecture
CORBA is a distributed object computing infrastructure standard managed by OMG (Object
Management Group). In general, by using CORBA based ORB (Object Request Broker),
application developers are able to produce distributed, interoperable components for reuse by
other applications.

DCOM – Distributed Component Object Model
DCOM is both a standard and a software implementation framework from Microsoft. Similar to
CORBA based ORBs, DCOM is a binary and network framework that allows any components to
communicate regardless of the locations, operating systems, and languages the components are
written in.

DII – Dynamic Invocation Interface
DII enables CORBA clients to invoke server objects dynamically. In contrast to static invocation,
which requires obtaining IDL description and generating Stub during client-side application
development. DII composes invocation requests at runtime and is more flexible at communicating
with dynamic objects.

DOC – Distributed Object Computing
DOC integrates objects distributed on the network and build software application based on these
objects. CORBA, DCOM, and Web Services are all infrastructures to support DOC.

DSI – Dynamic Skeleton Interface
DSI is the server-side counterpart of DII. It provides a way for CORBA servers to receive
invocations dynamically without building static Skeleton during development time.

IDL - Interface Definition Language
IDL is an implementation independent interface description language for component producers to
publish component behaviors or functions through standard and universally acceptable way. This
enables components users to invoke component functions without knowing the implementation
specific information.

UML - Unified Modeling Language
UML is the standard modeling language for object-oriented software development. It is used for
specifying, visualizing, constructing, and documenting the artifacts of software systems.

www.manaraa.com

222 Communications of the Association for Information Systems (Volume 9, 2002) 207-222

Component-Based Development Using UML by L. Zhao and K. Siau

XML - eXtensible Markup Language
XML is a text based universal format for exchanging self-descriptive information among different
parties over the Internet. It is a standard managed by W3C (World Wide Web Consortium). Many
other standards, including Web Services, are based on XML.

ABOUT THE AUTHORS

Luyin Zhao received a Master of Software Engineering and Business Management from the J.D.
Edwards Honors Program at the University of Nebraska-Lincoln in 2001, a Master of Computer
Science from Beijing University, and a Bachelor of Computer Science from Beijing University of
Aeronautics and Astronautics. He is currently a member of the research staff at the Healthcare
Systems and IT department of Philips Research USA and a part-time Ph.D. student at the State
University of New Jersey–Rutgers. His research interests include software engineering,
component and object-oriented technology, workflow systems in medical IT, interoperability, and
application of latest web technologies in the business domain.

Keng Siau is Associate Professor of Management Information Systems at the University of
Nebraska-Lincoln. He is Editor-in-Chief of the Journal of Database Management. He received his
Ph.D. degree from the University of British Columbia where he majored in Management
Information Systems and minored in Cognitive Psychology. His master and bachelor degrees are
in Computer and Information Sciences from the National University of Singapore. He is the author
of over 40 refereed journal articles which appear in such journals as Management Information
Systems Quarterly, CACM, IEEE Computer, Information Systems, Data Base, IEEE Transactions
on Biomedical Engineering, Journal of Database Management, Journal of Information
Technology, International Journal of Human-Computer Studies.

Copyright © 2002 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish
from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from
ais@gsu.edu .

www.manaraa.com

 ISSN: 1529-3181

EDITOR-IN-CHIEF
Paul Gray

Claremont Graduate University
AIS SENIOR EDITORIAL BOARD

Cynthia Beath
Vice President Publications
University of Texas at Austin

Paul Gray
Editor, CAIS
Claremont Graduate University

Sirkka Jarvenpaa
Editor, JAIS
University of Texas at Austin

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Reagan Ramsower
Editor, ISWorld Net
Baylor University

CAIS ADVISORY BOARD

Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of California at Irvine

Richard Mason
Southern Methodist University

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

CAIS SENIOR EDITORS

Steve Alter
U. of San Francisco

Chris Holland
Manchester Business
School, UK

Jaak Jurison
Fordham University

Jerry Luftman
Stevens Institute of
Technology

CAIS EDITORIAL BOARD

Tung Bui
University of Hawaii

H. Michael Chung
California State Univ.

Candace Deans
University of Richmond

Donna Dufner
U.of Nebraska -Omaha

Omar El Sawy
University of Southern
California

Ali Farhoomand
The University of Hong
Kong, China

Jane Fedorowicz
Bentley College

Brent Gallupe
Queens University, Canada

Robert L. Glass
Computing Trends

Sy Goodman
Georgia Institute of
Technology

Joze Gricar
University of Maribor
Slovenia

Ruth Guthrie
California State Univ.

Juhani Iivari
University of Oulu
Finland

Munir Mandviwalla
Temple University

M.Lynne Markus
Bentley College

Don McCubbrey
University of Denver

Michael Myers
University of Auckland,
New Zealand

Seev Neumann
Tel Aviv University, Israel

Hung Kook Park
Sangmyung University,
Korea

Dan Power
University of Northern Iowa

Nicolau Reinhardt
University of Sao Paulo,
Brazil

Maung Sein
Agder University College,
Norway

Carol Saunders
University of Central
Florida

Peter Seddon
University of Melbourne
Australia

Doug Vogel
City University of Hong
Kong, China

Hugh Watson
University of Georgia

Rolf Wigand
University of Arkansas

Peter Wolcott
University of Nebraska-
Omaha

ADMINISTRATIVE PERSONNEL

Eph McLean
AIS, Executive Director
Georgia State University

Samantha Spears
Subscriptions Manager
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University

	Communications of the Association for Information Systems
	October 2002

	Component-Based Development Using UML
	Luyin Zhao
	Keng Siau
	Recommended Citation

	Journal.doc

